If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+(x)-5=0
a = 1; b = 1; c = -5;
Δ = b2-4ac
Δ = 12-4·1·(-5)
Δ = 21
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{21}}{2*1}=\frac{-1-\sqrt{21}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{21}}{2*1}=\frac{-1+\sqrt{21}}{2} $
| 4^(x+5)=256 | | 6x=5x=3x+2x=-54 | | -u/3=-48 | | x2−2x+1=0 | | 42+x=2x+19 | | -3+5y=80 | | 5-g=2/3g | | 7(-5x/3+55/3)=77 | | 9+4c=17-2c | | x2+x−42=0 | | 15-20y=10 | | 18/c=c/2 | | 42=-7(e-3) | | 81x=27x+2. | | 5x=1-2x | | -2(x-3)=4(-x-7) | | 4/x^2+12/x+9=0 | | -5.2x-4.1= | | 6y+10=20+3y | | X3-4x+1=0 | | 5y-2=3y-1 | | 12.8=4c | | y=0.50(1.06)10= | | 32=7y-3y | | 7a+8=3a-7 | | 8n+15=12 | | 4x+11+2x+16=7x+10 | | 8n+18=12 | | 34=w+7 | | 2e-2=11.4 | | 5a+4=3a+12 | | (6,3x)*(6,5x)=14,8 |